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Hypothesis testing (Part I)

ABHA YA INDRA YAN, PIYUSH GUPTA

INTRODUCTION
After the general principles of statistical testing of hypotheses,
this article describes some methods of inference from proportions
including confidence intervals for relative risk and odds ratio. Part
II will deal with tests of hypothesis on means.

NULL HYPOTHESIS AND P VALUE
Court judgment
The concepts of null hypothesis and P value are best understood
with the help of an example of a court decision in a crime case.
When a case is presented before a court of law by the prosecution,
the judge is supposed to start with the presumption of innocence.
It is up to the prosecution to provide sufficient evidence against
the innocence of the person and change the initial opinion of the
judge. Guilt should be proved beyond reasonable doubt. If the
evidence is not sufficient, the person is acquitted, whether the
crime was actually committed or not. Sometimes the circumstan-
tial evidence is strong and an innocent person is wrongly pro-
nounced guilty. This is considered to be a serious error. Special
caution is exercised to guard against this type of error even at the
cost of acquitting some criminals!

Similarly, clinicians look at a lot of evidence including clinical
features, laboratory investigations, etc. before reaching a diagno-
sis. Despite this, misdiagnosis (disease is not present but diag-
nosed as present) is not uncommon. This is a more serious error
than missed diagnosis, which occurs when the disease is present
but missed. Similar errors can occur in statistical decisions.

Null hypothesis
In the case of statistical decisions too, the assumption initially
made is that there is no difference between the groups. This is
equivalent to the presumption of innocence in the court setting
and is called the null hypothesis. The notation used for this is Ho'
This is the hypothesis under scrutiny and sought to be refuted by
conducting a study on a sample of subjects.

The sample observations serve as evidence. Depending upon
this evidence, H, is either rejected or not rejected. In an empirical
set-up, H, is never accepted though it could be conceded. The
conclusion reached is that the evidence is not enough to reject ~.
This may mean two things: (i) further evidence needs to be
collected, and (ii) continue to accept the present knowledge as
though this investigation was never done. The 'truth' remains
unchanged in this case.
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Alternative hypothesis
When H, is rejected, what would be accepted? The alternative
hypothesis is the assertion accepted when Ho is rejected. This is
denoted by HI' The alternative hypothesis could be one-sided
where either superiority or inferiority is accepted. In case of a two-
sided HI' only the difference is accepted without any inference as
to which is better or higher.

P value
We stated earlier that the values observed in the sample serve as
evidence against Ho' The error of rejecting a true null hypothesis
is similar to punishing an innocent. This is more serious and is
called a Type I error; popularly referred to as P value. Thus, P
value is the probability that a true null hypothesis is wrongly
rejected. The maximumP value allowed in a problem is called the
level of significance or sometimes then-level. P value is the prob-
ability that the conclusion of presence of difference is reached
when actually there is no difference. Being serious,P value is kept
at a low level, mostly less than 5%, orP<0.05. WhenPvalue is this
low or lower, it is generally considered safe to conclude that the
groups are indeed different. This is also called statistical signifi-
cance. This threshold, 0.05, is the level of significance.

Type II error. The second type of error is failing to reject Ho
when it is false. This corresponds to missed diagnosis or pro-
nouncing a criminal as not guilty. The probability of this error is
denoted by ~. In a clinical trial, this is equivalent to declaring a
drug ineffective when it is effective. This is not so much of an
error, albeit it is an error. If the manufacturer believes that the drug
is really effective, the company will carry out further trials and
collect more evidence. Thus, the only effect of Type II error is that
the introduction of the drug is delayed but not denied.

Type II error is calculated after fixing the level of significance
a, and for a specific value under the alternative hypothesis.

Power. The complementary of Type II error is called power.
Thus, the power of a test is the probability of correctly rejecting
an H, when it is false. This is the probability of getting a statis-
tically significant result. Power depends on the magnitude of the
difference really present in the target population and the level of
significance. The power of a test is high if it is able to detect a small
difference and thus reject Ho'

Power becomes especially important when the investigator
does not want to miss a specified difference. For example, a hypo-
tensive drug may be considered useful if it reduces diastolic blood
pressure by an average of at least 5 mrnHg after being used for, say,
one week. A sufficiently powerful statistical test would be needed
to detect this difference with a high probability. Thus (l-~) is an
important consideration in this set-up. However, the difference (5
mmHg in this case) should be chosen on some objecti ve evidence.

General procedure to obtain a P value
The exact form of test criterion for obtaining P depends on:



CLINICAL RESEARCH METHODS

1. the nature of the data (qualitative or quantitative),
2. the form of distribution if the data are quantitative (Gaussian

or non-Gaussian),
3. the number of groups to be compared (two or more than two),
4. the parameter to be compared (can be mean, median, correlation

coefficient, etc. in the case of quantitative data),
S. the size of the sample (small or large), and
6. the number of variables considered together (one, two or

more).

The exact criteria used to test different statistical hypotheses
are described subsequently. The distributional form of these
criteria has been obtained and is known. These are used to find P
values according to the following procedure:

Step 1. Set up a null hypothesis and decide that the alternative is
one-sided or two-sided.

Step 2. Identify a criterion suitable for the set-up in hand. This
would depend on items 1-6 enumerated above. These criteria
are also called tests of statistical significance.

Step 3. Use sample observations to calculate the value of the
criterion assuming that the null hypothesis is true.

Step 4. Compare this value with its known distribution, and
assess the probability of occurrence of a value of the criterion,
which is as, or more extreme towards HI than that obtained in
Step 3. This is calculated for both the negative and positive side
when the alternative is two-sided. Since the comparison is with
the distribution under Ho' a high probability indicates that the
Hois plausible and cannot be rejected. A very low probability
indicates that the Hois very unlikely to be true and deserves to
be rejected. This probability is the P value.

Step 5. Decide a threshold a of the P value that can be tolerated
for the problem at hand. Reject Ho if P is less than this thres-
hold, otherwise not. Generally, P<O.OS is considered low
enough for H, to be rejected. Statistical significance is said to
have been achieved when H, is rejected. Such a result can be
stated in a variety of ways:

• The evidence against the null hypothesis is sufficient to reject
it.

• The chance that the null hypothesis is true is very small (or, the
null hypothesis is extremely unlikely to be true).

• The alternative hypothesis is accepted.
• The P value is less than a predetermined threshold, e.g. O.OS.
• The probability of wrongly rejecting Ho(Type I error) is very

small.
• The result achieves statistical significance.

All these statements are the same. They illustrate how a deci-
sion was reached despite the uncertainty. Conceding a null hy-
pothesis can also be similarly stated in a number of different ways.

METHODS OF HYPOTHESIS TESTING: INFERENCE
FROM PROPORTIONS
Tests of significance are standard statistical procedures for draw-
ing inferences from the sample about the target population.
Sample estimates are never exact, being subject to sampling
errors. Tests of significance allow us to decide whether the sample
estimates, or the differences between estimates, are within their
normal sampling variation.

Inferential methods are different for qualitative and quantita-
tive variables. Variables in medicine and health are predomi-
nantly qualitative in nature and lead to proportions, rather than
means, which are obtained on quantitative data. The methods of
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this article are applicable to situations where the interest is in
proportions. Procedures to draw inferences from means are pre-
sented in a subsequent article.

In this article we shall deal separately with three situations.
First, where only one qualitative variable is under consideration
and the interest is in finding out whether the population propor-
tion is a specific value, or whether a specified pattern exists in
proportions in different categories. The second section is on the
association between two dichotomous variables. A useful off-
shoot of this set-up is a relative risk (RR) and odds ratio (OR). A
separate section is devoted to these concepts because of their
importance in dealing with uncertainties in the health sciences.
The methods for two or more polytomous variables are considered
in the last section.

ONE QUALITATIVE VARIABLE
The proportion of obese among hypertensives, the proportion of
healthy babies born with different birth weights «2S00 g, 2S00-
3499 g, ~3S00 g) and the proportion with different grades of head
injury (mild, moderate, serious, critical) among those surviving,
are examples of proportions based on one qualitative variable.
The variables in these examples are obesity, birth weight and head
injury, respectively. The variable is dichotomous (obese/non-
obese) in the first, and polytomous (multiple categories) in the
second and the third cases.

In the case of dichotomous categories, the P values under the
null hypothesis can be easily obtained by what we call a binomial
distribution. This can be approximated by Gaussian form when n
is large and 7r is not too small. Gaussian approximation seems to
work well when nx ~8, where 7r is the population proportion.

In the case of polytomous categories, the exact distribution
applicable to calculateP value is called multinomial. This is com-
plex and a computer is generally needed to compute these prob-
abilities. However, in many situations, whenn is large, this can be
reasonably approximated by Chi-square. In view of the impor-
tance of Chi-square in dealing with uncertainties in health sci-
ences, it is explained in detail below.

Polytomous categories (large nY-Goodness of fit x2-test
The method is applied to a situation where the variable has several
categories. Let the interest be in finding whether the subjects in
the target population do or do not follow a pre-specified pattern.
Such a problem is known as the problem of 'goodness of fit'
because the interest is in finding whether the pattern observed in
the sample does or does not fit well into the specified pattern.

Example 1a. A random sample of t 50 patients with acquired
immunodeficiency syndrome (AIDS) are investigated to examine
the possibility of a preponderance of a particular blood group in
AIDS cases. If there is no preponderance, the profile would be
the same as in the general population. Suppose this is 6:5:8: t for
blood groups 0, A, Band AB, respectively. The sample observa-
tions are as follows:

Blood group 0 A B AB Total
AIDS patients 57 36 5 t 6 t 50

What is the chance that this sample has indeed arisen from the
population with a blood group pattern in the ratio 6:5:8: t?

Denote the population proportion in the four blood groups by
7rI, 7r2, 7r3 and 7r4' respectively. The null hypothesis in this case is

Ho: 7r1 =0.30, 7r2=0.25, 7r3=0.40 and 7r4=0.05 (1)
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This comes from the blood group ratios in the population. The
interest is in testing whether the sample provides enough evidence
against this Ho' The alternative hypothesis H I is that the pattern
is any other than (1).

Before going any further with this example, we need to explain
the following.

Chi-square and its explanation. Denote the observed frequen-
cies in the four groups in the sample byOJ' 02' 03' and 04' respec-
tively. That is, 0J=57, 02=36, 03=51 and 04=6. IfHo is really true
then the frequencies expected, denoted byEs, would be in the ratio
specified in (1), i.e. Ek= nlrk (k=l, 2, 3, 4). For n=150, we get
EJ=150xO.3=45. Similarly, E2=37.5, E3=60 and E4=7.5. A large
difference between Os and Es would suggest that the observed
pattern is different than that stipulated in (1). It would serve as
evidence against H, and in favour of HI' Thus, the examination of
the differences (Ok-Ek) for different k could be helpful. Since the
total ofthe expected frequencies has to be the same (n=150) as that
of the observed frequencies, it is imperative that some of these
differences would be negative and some positive. The sumL(Ok-
Ek) would be zero. As in the case of deviations (x;-x) for calculat-
ing standard deviation (SD), square of these differences helps to
get rid of the negative sign. This gives (Ok-E/. The magnitude of
these squares is the key to the plausibility of Ho' However, a
difference of 1.5 over the expected 7.5 in blood group AB has a
different meaning than the same difference over the expected 37.5
in blood group A. The former difference is one-fifth of the
corresponding expected frequency while the latter is not even one-
twentieth. Thus, the squared differences should be viewed in
relation to the expected frequencies. The quantity [(OCEk)2IEk)]
becomes relatively free of the differentials existing in the expec-
ted frequencies in different groups and helps to give nearly equal
weight to the groups. Instead of taking the average of these
quantities, this time obtain the sum L[(Ok-E/1EJ. This criterion
is based entirely on frequencies and is thus unit free. This obviates
the need to take the square root as is done at the time of calculating
SD. As a reminder that the quantity is a square, the sum is called
Chi-square (x2).

Chi-square: X2=L ---- (k=l, 2 ... , K) (2)
s,

where K is the total number of cells in the contingency table. In
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Example la, K=4. Note that Es are obtained assuming that Hois
true. Thus the value of X2 in (2) is under Ho' When Ho is true, the
difference between O, and Ek, (Ok-Ek)' should be small and thus
the value of X2 also should be small. In other words, a large value
of X2 is unlikely if H, is true. If the sample gives a large X2, it is
evidence against Ho'

Now, we need to find the P value. This is the probability of
occurrence of the value of the criterion as much or more extreme
than that obtained for the sample data. For this, the distribution of
the criterion under Ho is needed. This distribution of X2 is known
and the critical values are tabulated in standard probability tables
for specific values of the level of significance a. However, this
requires that four-fifths of the expected frequencies are at least
five. The shape of the distribution varies according to the degrees
of freedom (df) which in turn depends mostly on the number of
cells K. Different distribution of X2 for different df is analogous to
the different distribution of diastolic blood pressure (DBP) in
different age-groups. The df can be explained as follows:

Degrees offreedom (df). In Example l a, there are four catego-
ries of blood group, namely, 0, A, B, and AB. However, the
frequency in only three of them can be freely chosen, the fourth is
automatically determined by the total. If the frequencies chosen
for 0, A and AB are 70, 20 and 10 then the frequency in B group
has to be 50 since the total is 150. If the frequencies chosen for 0,
A and Bare 60, 30 and 20 then the frequency in the AB group has
to be 40. Thus, there is a freedom to choose only 3 out of 4 cells.
This is called the degrees of freedom (df). For K cells in a one-way
contingency table, df=K-l when the sample values have no
restriction other than the fixed total.

Example 1b. From the data in Example 1a, we get the following:

Blood group
A B AB
36 51 6

37.5 60 7.5
°57
45

Total
150
150

Observed frequency (Ok)
Expected frequency
under Ho (Ek)

0k-Ek 12.0 -1.5 -9.0 -1.5 0
(Ok-Ek)2IEk 3.20 0.06 1.35 0.30 4.91

Thus, X2 = 4.91. If a computer software is used, it will
automatically compare the calculated value of X2 with its known
distribution and tell us that P=0.1 78. Otherwise, from the

• Chi-square does not require the frequency pattern to be Gaussian or any other specific pattern. Thus, Chi-square
is a distribution-free procedure.

• Chi-square works fine when the expected frequency in any cell is not less than 5. This is generally met when n is
large and no cell probability is very small. Without Ek?5 for each k=1 , 2, ... , K, the use of Chi-square is not con-
sidered valid. However, when the number of the categories K is large, not more than one-fifth of the categories (i.e.
KI5 cells) should have Ek<5 and none should be less than 2.

• Chi-square is calculated on the actual frequencies in the cells and not the percentages.
• Chi-square is basically a two-tail test. Significance in this case implies only presence of some difference and it can

seldom be labelled positive or negative. Thus, the alternative hypothesis H, is two-sided.
• The r criterion would be large even if one particular difference (O/iEk) is large. Thus, rejecting Hoonly tells us that

there is at least one cell where the frequency is substantially different from the expected but fails to specify the cell
where it is different. On the other hand, if a large difference is present in only one cell, then this can be masked by
the small differences in the other cells. For a more focused inference, partitioning of the table is helpful.

• There is a growing feeling that the use of conventional probability cut-offs such as P<O.05, P<O.01, etc. should be
discontinued and the exact P value be used instead. The user then is in a better position to decide how much
significance should be to attached to the results.

• Inference from statistical tests is probabilistic rather than definitive. The chance of error is controlled to <5%. This
certainly works in the long run but might fail in a particular case.
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probability tables, theP value for 3 df andx2 = 4.9 t is more than
0.05. Thus the sample values do not provide sufficient evidence
against Ho' The observed frequencies in different blood groups
can well arise by chance when the sample is from a population with
a pattern shown in (I), Thus, Ho is plausible and cannot be rejec-
ted. Preponderance of any blood group in the casesof AIDS can-
not be concluded on the basis of this sample.

Partitioning of table
The data in Example 1reveal that the observed frequency in blood
group 0 is much higher than that expected from the pattern in the
general population. However, the other differences are not as
large. To check that this really is so, first check that the pattern in
blood groups A, Band AB is nearly the same as expected, and later
check the difference in blood group O. The corresponding null
hypotheses are

HOI:A, Band AB are in the ratio 5:8:1 (same as before); and
HOll: 7r,=0.3,7r2+7r3+7r4=0.7.

The second ratio is also the same (6:14) as in the population.
For these two null hypotheses, calculations for X2 are as follows:

I. Blood group A B AB Total
Ok 36 51 6 93
Ek 33.2 53.1 6.6 93
(Ok-EYIEk 0.24 0.08 0.05 0.37=X2

1

II. Blood group 0 Others Total
Ok 57 93 150
Ek 45.0 105.0 150
(Ok-Ek)2IEk 3.20 1.37 4.57=X2

11

The division of the earlier 4-cell table into two tables as shown
above is called partitioning. The first partition gives X2

1=0.37.
This has 3-1=2 df. The P for X2=0.37 (df=2) is 0.831. Since it is
more than 0.05, HO!cannot be rejected. The evidence is not suffi-
cient to conclude that the pattern of A, Band AB in AIDS cases
is not the same as in the general population. Part II has only two
cells so that X2 u has only one df. The P in this case is 0.033. This
is less than 0.05 and is statistically significant at the 5% level. It
can be concluded that blood group 0 is more common in AIDS
cases while nothing can be said about the other three groups.

The conclusion reached after partitioning is different from the
one reached earlier when all the cells were considered together.
This is because the lack of difference in A, Band AB groups
masked the difference in the 0 group. Partitioning helped to
uncover this.

PROPORTIONS IN 2x2 TABLES
We shall now discuss whether the proportion of subjects possess-
ing a particular characteristic is the same in one group as com-
pared to another. The set-up is essentially bivariate. There are two
variables, both with two categories each. Such a set-up is also
known as a 2x2 table (Table I). Three situations are possible.
These are explained for the classical set-up of one variable being
antecedent and the other outcome.

Prospective study
The column totals 0., and 0'2 for antecedents are fixed in
advance. We can then denote them also byn, andn2, respectively.
These are the number of subjects with and without the antecedent
and followed up to observe the outcome. The row totals Orand
02' with and without outcome become known only afterthe inves-
tigation is over. The relevant null hypothesis in this case is
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TABLE1. General structure of a 2x2 contingency table

Variable-2 (Outcome) Variable-l (Antecedent) Total

Present Absent

Present 0/1 (11:/1) OJZ (11:J') OJ' (11:r)
Absent On (11:z) o; (11:zz) Oz· (11:z·)

Total O'J(11:) O·z(11:) n

The corresponding probabilities are in parentheses

HO:7r1l=7r'2' This states that the incidence rate in the two exposure
groups is the same.

Retrospective study
The row totals O': and 02' for the outcome are fixed in advance
and the column totals 0., and 0. 2 with and without antecedent are
obtained through the study. The fixed row totals can also be
denoted by n, and n2• The null hypothesis now is that the rate of
presence of antecedent in those with positive outcome is the same
as in those with negative outcome, i.e. Ho: 7r1J=7r2i'

Cross-sectional study
Neither the column totals nor the row totals are fixed in advance
and both become known only after the study is over. A sample of
n subjects is studied and the presence or absence of antecedent and
outcome both are simultaneously observed. In this case,
7r1J+7r'2+7r2l+7r22=1. As per the law of multiplication of probabili-
ties, the antecedent and outcome are independent only if
Ho:7r,c=7r,.*7r·c (r,c=I,2) holds, where 7r,=7r,,+7r'2 and 7r'c=7r'c+7r2c

The Hoin the first two cases is called hypothesis of homogene-
ity (column homogeneity and row homogeneity, respectively) and
the H, in the third case is called the hypothesis of independence.
Such a distinction is required for proper interpretation of results
but the method of calculation is the same in all the three situations.
We describe the methods for independent samples and matched
pairs separately.

Tests for proportions in independent samples
Chi-square test. If the sample size (n) is large, under any ofthe

above three Ho' the test criterion analogous to (2) is given by

(O,c-E,/
Chi-square: X2=L", (r,c=I,2), and df=1 (3)

E rc

The justification is the same as for (2) and the applicability also
requires each expected cell frequency to be at least 5. In a 2x2
table, df= 1. There is a freedom to arbitrarily choose frequency in
only one cell. Others are automatically decided because the row
and the column totals are considered fixed. The test procedure is
to calculate X2, and find the probability (P value) of obtaining this
or a higher value. A small value ofP, as before, is evidence against
Ho' If P value is sufficiently small, say less than 0.05, then reject
Ho' otherwise not.

We would like to point out two things here: first, the popular
Yate's correction is advisable in a 2x2 table, particularly ifn is not
very large. This helps in reaching a better approximation of a
discrete distribution by a continuous distribution, though this
often makes the test very conservati ve. Second, when frequencies
are small, use Fisher's exact test. Both these can be easily taken
care of by standard statistical packages.

Tests for proportions in matched pairs
The procedure given above is valid only when the two groups of
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TABLEII. Matched pairs with dichotomous antecedent and
dichotomous outcome: Prospective study

Partner 2 Partner I
Antecedent present Antecedent not present

(Exposed or experiment) __ .:::.(N-.:o:..:.t:..:.ex~p:..:o_se_d_o_r_c_on_tr_o...:.l)__

Total

Positive outcome
(disease -)

Negative outcome
(disease -)

Positive outcome (disease +) a
Negative outcome (disease -) c

Total a+c

b a+b
d c+d

b+d n=a+b+c+d

subjects are independent. Independence is lost when there is some
kind of matching or pairing. In such circumstances, simple Chi-
square or Fisher's exact test are replaced by McNemar's and exact
test for large and small n, respectively. Table II depicts the design
of a study where the pairs are matched in a 2x2 set-up. In this table,
for example, b is the number of pairs in which the exposed partner
develops the disease and the non-exposed partner does not.

McNemar's test for large n. A popular criterion in case of
matched pairs is as follows:

(lb-cl-l)2
McNemar's test: X2

M= ----- (4)
b+c

where band c are as in Table II.
This continues to be referred to Chi-square distribution for

obtaining the P value. The restriction of no cell frequency less
than S applies. Subtraction of 1 in the numerator of (4) represents
continuity correction similar to the Yate's correction. Note that
the concordant pairsa andd do not contribute at all to the decision.
It is solely based on the number of disconcordant pairs of the two
types.

Exact test for matched pairs with small n. McNemar's test also
ceases to follow Chi-square distribution when n is small. The test
is then done with the help of a binomial distribution. The P value
under Ho is

(b-e)
P= L (b+c)C/Y2)(b+C)

x=b
(S)

This is the probability of obtaining b or more discordant pairs
when H of no association (1r=Y2) is true. The HI in this case is that
positive outcome is more frequent in those with antecedent
present. Thus,b should be large if HI is true andc should be small.
The probability (S) is of the configurations as much or more
extreme favouring HI when actually there is no association. If this
is small, say less than O.OS, reject Ho and conclude that an
association is present.

Example 2. To evaluate the role of a therapy in relieving common
cold within a week, 15 cases were given therapy and another 15
cases served as controls. The experimental and the control cases
were one-to-one matched for age, gender and body mass index
so that these do not act as confounders. The results obtained were
as follows:

With therapy
(Experimental group)
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In this example, b= 3 and c= 1. The probability of a Type I
error in this case is the chance that the therapy is effective in at
least 3 pairs in the sample when it actually is not effective in the
target population. This is

p= 4C
3
( 112)4+ 4C4( 112)4=0.31

Since this is high, the observed configuration could well have
arisen due to sampling fluctuation even when there is no actual
association. Thus the null hypothesis of no association cannot be
rejected. It cannot be concluded that the therapy is effective in
relieving common cold within a week.

RELATIVE AND A TTRIBUT ABLE RISKS, AND ODDS
RATIO (large n)
A useful application of the comparison of two proportions is
studying the RR and attributable risks (AR), and the odds ratio
(OR). These terms are differentially used in the context of pro-
spective and retrospective studies, respectively. In case there are
more than two groups, the comparison could be made between
two groups at a time. However, several RR, AR and OR will have
to be computed. The concepts of risk and odds are mostly relevant
to a large n only.

Relative risk (RR)
Relative risk in independent samples. Relative risk is the ratio

of the risk (incidence) of developing an outcome such as disease
(D) in those with antecedent factor (A) compared to those without
this factor. This obviously requires a prospective study according
to the structure in Table III. In terms of probabilities,

P(D+/A+)

P(D+/A-)

where' +' is for presence and '-' is for absence. Note the condition
that 7r +7r = 1 and 7r +7r = 1 as statedearlier. This is estimated by1/ 21 12 22

o.t«,"RR=---
Ojn2

where hat (") sign is for the estimate. If any arc (r,c=1,2) is zero
then a modified estimate of RR is

(0 1/ +O.S)/n I"RRmOO=----------
(0 12+0.S)/n2

Confidence interval. It can be shown that InRR (naturalloga-
rithm of RR) has a Gaussian distribution for large n. Thus, InRR
is used for inferences when n is large. It is known that for a large
sample that an approximate estimate of its standard error (SE) is
the following:-VIllI
S"E(lnRR) "" --- + ---

aI/ nl 021 n2

(6)

Without therapy Total
(Control group)

Relieved in 1 week Not relieved in 1 week
Relieved in 1 week
Not relieved in 1 week

Total

5
1
6

3
6
9

8
7
15
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TABLEIII. Structure of a prospective study

Outcome (D) Antecedent(A) Total

Present Absent

Present oII (nil) oJ2 (nu) Or (nr)
Absent 021 (n21) On (nn) 0]" (n]")

Total =. (I) n2 (I)

The corresponding probabilities are in parentheses

" " "The 95% CI for RR can be obtained asexp [lnRR±2SE(lnRR)]
following the procedure outlined in our previous article. I

Example J. Martinez et al.2 reported a prospective study on
wheezing lower respiratory tract illness (LRI) during the first year
of life of 500 boys and an almost equal number of girls. These
were enrolled at birth in Tucson, Arizona, of the USA between
1980 and 1984. Among the objectives was to explore maternal
age as a risk factor for wheezing LRI. The data for the boys are
given below.

Maternal age (years) Lower respiratory tract illness
Yes No

Total

<26
2..26

48 117
65 270

165
335

The estimated RR of wheezing LRI in boys with mother's age
< 26 years compared to boys with mother's age 2..26 years is

481165
RR=---=1.50

65/335

Thus, boys born to younger women were 1.5 times more
likely to get LRI during their first year of life compared to boys
born to older women. Also, InRR= In( 1.50) =0.4055, and

" "SE(lnRR)=
1 1 1 1

--- -+ - -- = 0.1648
48 165 65 335

Therefore, 95% CI for RR isexp(0.4055±2 xO.1648), or
(eO.076, eO.735), or (1.08, 2.09). With a 'relaxed' meaning of CI,
it can be stated with 95% confidence that this interval contains
the true RR in the population.

Test of hypothesis. Since the above CI does not include RR=l,
the Ho:RR=l can be safely rejected. It can be concluded that the
risk of wheezing LRI in the first year of life was indeed higher in

• RR=1 implies independence, i.e. the risk in the
exposed subjects is the same as in the non-exposed
subjects. RR>1 means a higher risk in the exposed
and RR <1 means a lower risk. Lower than one RR
can be interpreted as a protective effect in place of
risk.

• It is preferable to keep the adverse category of
antecedent in the first column ofthe 2x2 contingency
table and the adverse outcome in the first row. The
interpretation is then easy.

• The' term I risk' literally relates to an adverse
outcome. However, statistically, this is not
necessarily so.
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boys born to women of younger age. Thus, one procedure to test
Ho is to calculate

"InRR
Z=" " (7)

SE(lnRR)

and reject it if the corresponding P value is <0.05.
The second procedure to test Ho:RR= 1 against HI: RR*l is by

Chi-square as explained for 2x2 tables. In this case,x2=5.93. The
Chi-square value at one dfis 3.84 forP=0.05. Since the calculated
value is higher, P<0.05. The chance that RR=l in the target
population will give the observed numbers or more in favour of HI
is exceedingly small. Thus, the null hypothesis is rejected. Con-
clude that RR*l. In case there isa priori reason to believe that RR
would be more than one, then HI:RR>l. It may then be prudent to
use (7) and refer it to the Gaussian distribution table to get the one-
sided P value. In this example, Z=2.46. From probability tables,
P(Z~2.46)=0.007. This P value is not only less than 0.05 but also
less than 0.01. There is practically no chance ofHo being true. The
sample provides strong evidence against it. The RR can be said to
be highly significantly different from RR=l.

RR in case of matched pairs. A general situation of matched
pairs with regard to antecedent and outcome in a prospective study
is shown in Table II. In this case, RR is estimated as follows:

" a+b
Relative risk (matched pairs): RRM= ---

a+c

CI and test of Hofor RR in case of matched pairs can be done
by the method given later for OR.

Attributable risk (AR). Attributable risk is the difference in the
risk among the exposed and non-exposed subjects. This is directly
estimated as (Ojn/-OJ!n2) in case of independent samples. In
case of matched pairs,

" b-c
ARM=---

n

AR measures the expected reduction in risk if the exposure
factor is eliminated. Thus, this is of public health importance.

Population attributable risk. The population attributable risk
(PAR) estimates the excess rate of disease attributable to the
exposure in the total population under study and is calculated as
the rate (incidence) of disease in the population including exposed
minus the rate in the non-exposed group. This is different from AR
since the population comprises both the exposed and non-exposed
groups of people.

Both AR and PAR are sometimes calculated as percentage of
the risk in the exposed group. In that case, these can be understood
as attributable fractions. The PAR fraction can be directly ob-
tained from RR when the proportion of persons with the given risk
factor is known.

p(RR-l)
PAR=-----

p(RR-l)+l

where p is the proportion of persons having the given risk factor.

Odds ratio (OR)
In betting it is often said, that the odd of winning is 1:3. This means
that a loss is 3 times more likely than a win. Similarly, in retro-
spective or case-control studies, an odd is the frequency of
presence of the antecedent relative to its absence. It is calculated
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TABLEIV. Structure of a case--control study

Outcome Antecedent Total

Present Absent

Present (cases) 01/ (1'1/)
Absent (controls) 021 (n2)

Total 0.1 (n)

012 (nI2)

022 (n22)

0.2 (n)

nl (1)
n2 (1)

n

The corresponding probabilities are in parentheses

for the cases and controls. The ratio of these two odds is called the
OR.

Two independent samples. In the case of case--control studies,
Table I takes the form of Table IV. In this case, 7r12=1-7rJ/ and
7rzz=1-7rzr The odds of the antecedent being present among cases
is 7r)7riZ and among controls is 7rz/7rzz" Thus, the odds ratio is

7r)7r12 7rJ/X7r22
OR=---

This is estimated as

A

OR=---

°12°21
If any of the cell frequencies is zero, then the modified estimate

of OR is calculated as:

A

ORmOO=---------
(°12+0.5) (°21+0.5)

Example 4. Consider the following data on parity status of 21 0
anaemic and 140 non-anaemic women.

Anaemia
Present
Absent

Parity ~2
98
92

Parity 2..3
112
48

Total
210
140

98x48
OR= =0.46

92 x 112

The likelihood of parity ~2 among anaemics is less than one-
half that among non-anaemics.

Clfor OR. OR is a ratio and its natural logarithm (In) becomes
a linear function. The distribution of OR can be shown to be highly
skewed but InOR has nearly Gaussian pattern for large n. It has
been established that for large n,
A A

SE (lnOR) =...)1I0J/+IIOI2+ 11021+ 11022 (8)

where 011' °12, °21 and °22 are as in Table IV. If any °rc=0 then
add 112 to each 0rc in the denominators in (8). For large n,

A A
95% CI for OR: exp(lnOR±2SE (lnOR)),

where exp is exponent on Neparien base e.
Test of hypothesis on OR. In this case, the H, almost invariably

is that OR=l. This states that the presence of the antecedent is as
common in cases as in controls. A simple statement which takes
care of both negative as well as positive directions of relationship
is that there is no association under Ho between the antecedent and
the outcome. The alternative could be one-sided HI:OR<l or
HI:OR>l, or two-sided HI:OR;tl. The latter is applicable when
there is no a priori assurance that the relationship could be one-
sided. The hypothesis is tested by the classical Chi-square proce-
dure as given in (3).
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T ABLEV. Matched pairs in a case--control study with dichotomous
antecedent

Cases (Partner 2) Controls (Partner 1)

Antecedent present Antecedent not present
(exposed) (non-exposed)

Antecedent present (exposed) A
Antecedent not present (non-exposed) C

B
D

OR in matched pairs. Consider Table V on matched pairs. This
is similar to Table II. We are now using capital A, B, C, D as the
notation of cell frequencies in place of lower case a, b, c, d to
distinguish the case--control set-up from the prospective set-up.
Note also how the labelling of the cells has changed.

The total number of pairs is A+B+C+D. In this table, A is the
number of pairs with both case and control subjects exposed, D is
the number of pairs with both non-exposed. These two together
are the concordant pairs. The OR is computed on the basis of the
disconcordant pairs: Band C. In case of an association between
exposure and disease, clearly B should be more than C.

A B
Odds ratio (matched pairs): ORM =--

C

Confidence interval: For large Band C,

A A ~ 1 I
SE(ln ORM) = - + -

B C

Thu,. 95% elfodog of odds ratio is ln( ;)±2 ~ : + ~

(9)

B
Take exponential of the limits and get - e± 2 ~

C

Test of hypothesis. The relevant null hypothesis in this case is
Ho:ORM=l. To test this against a one-sided alternative HI :ORM > 1,
calculate

B-C
z=--

...)B+C
(lOa)

For large n, refer it to the usual Gaussian distribution to find
whether the P value is sufficiently small or not. For a two-tailed
test, it may be easier to calculate McNemar's

(IB-Cl-l)2
X2 = -------- (lOb)

B-C

and refer it to Chi-square at one df.

ANALYSIS OFRxCTABLES (largen)
So far, we have discussed analysis of tables with two rows (R=2)
and two columns (C=2). This means both the characteristics (or
variables) are dichotomous. However, there are a large number of
variables that are not dichotomous. Concern now is with a set-up
where both the variables are polytomous and qualitative. It is also
presumed that n is large and at least 80% cells have a minimum
frequency of 5.

The method to find whether or not the two qualitati ve variables
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• The interpretation of OR is similar to that of RR. It
can be shown' that OR approximates RR fairly well
when the outcome of interest is rare, say <5% in the
target population. Most outcomes of medical interest
are rare. If the outcome is not rare, OR may over-
estimate RR if it is more than one and underestimate
it if less than one.

• The sample OR is always a good estimate of the
population OR whether or not the disease is rare in
the population.

• In caseficontrol studies, it could be inappropriate to
use the term incidence since the reference is to
presence or absence of antecedent characteristic.
Thus the term 'odd' is used.

are associated continues to be Chi-square in case of two polytomous
variables. If n is large, (3) is used with Rand C is now more than
two. The df will be (R-l)(C-l). This considers all categories
nominal. When the categories are ordinal, the trend in proportions
can be investigated by calculating Chi-square for trend. For this
see Le.3

THREE- WAY TABLES
A three-way contingency table arises when the classification of
the subjects is done with respect to three variables. This is a type
of multivariate categorical data set-up. Besides row and column,
the third dimension is called layer. The number of rows, columns
and layers can be denoted by R, C and L, respectively. As in the
case of two-way tables, the null hypothesis in a three-way table
could be of homogeneity of different types or of independence,
depending upon individual variables being factors or responses.
The calculation of X2 is done as a formula similar to (3).

Under Ho' this now follows a Chi-square distribution with
(R-l)( C-l)(L-l) df. Chi-square, if significant, only indicates that
an association is present somewhere. To find where exactly this
association is, one approach is partitioning. The second and more
versatile approach is to use log-linear models.

Log-linear models. The logarithm of expected frequencies in
a contingency table can be expressed in terms of additive factors.
Thus the name 'log-linear' for these models. These models are
useful only when no variable is considered dependent on the
other. The dependent variable in these models is the number of
subjects in a cell of the contingency table. The objective is to find
whether or not the variables categories, individually or jointly, are
significantly contributing to determining the cell frequency. These
models can be applied to both two-way, three-way and higher
dimensional tables. Interested readers may consult Haberman" for
a detailed discussion on the methodology of log-linear models.

Log-linear models can also be used to evaluate the net associa-
tion between two variables after removing the effect ofthe others.
Stellman et al.5 used a series of log-linear models in a case-
control study on cervical cancer and cigarette smoking. They
controlled age and socio-economic status and concluded that net
association between cervical cancer and smoking was not statis-
tically significant at 5% level.

Three-way tables are also obtained as a collection of several
two-way tables. Suppose an association between smoking and
hypertension is investigated for six different professions. Then six
contingency tables would be available. The professions can be
viewed as strata. While separate Chi-square can be calculated for
each profession, a more reliable conclusion can be drawn by
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Parameter of interest
and set-up

Main criterion

TABLE VI. Statistical procedures for inference from proportions

Equation
number

Conditions

Proportion
One dichotomous
variable

Independent trials
Any n Binomial
Large n (n7r ~8) Gaussian Z

Independent trials
Large n Goodness of fit

Chi-square
Small n Multinomial

One polytomous
variable

Two dichotomous
variables (2x2)

Two independent samples
Large n Chi-square
Small n Fisher's exact
Matched pairs
Large n
Small n

McNemar's
Binomial

Relative risk and odds ratio*
Natural logarithm
ofrelati ve risk

Odds ratio

Two independent samples
CI ±2SE
Test of H, Gaussian Z
Matched pairs
CI ±2SE
Test of Ho Z or X2
Two independent samples
CI ±2SE
Test of Ho Chi-square
Matched pairs
CI
Test ofHo

±2SE
Zor X2

Bigger tables-No matching
Association RxC tables Chi-square

Test er a,
Three-way tables
Test of full Chi-square
independence
Test of other G2
types of independence
(log-linear models)

Not given
Not given

(2)

Not given

(3)
Not given

(4)
(5)

Use (6)
(7)

Use (9)
(IOa, lOb)

Use (8)
(3)

Use (9)
(lOa, lOb)

Similar to
(3)

Similar to
(3)
Not given

• The case of small n is not discussed as the main condition is a large n
CI confidence interval SE standard error

combining the data, provided the differences across professions
are not significant. This is done by using the Mantel-Haenszel
method. For details, consult Le.3

Table VI summarizes the statistical procedures that can be used
to derive inferences from proportions, under different conditions.
These are mostly restricted to the simple cases that we have
discussed. The list is by no means exhaustive. There are several
methods that we have not touched upon. If proportion is to be
estimated from a set of regressors, logistic regression is used. If
proportion relates to survival and duration of survival is of
interest, then survival analysis is used. A different set of methods
is required for multiple response tables.
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